Military & Aerospace / Avionics COTS Conference

August 22-25, 2000

Commercial Off-The-Shelf (COTS) Program

Methodology and Results of Upscreening Electronic

Parts - An Update

Mike Sandor, Shri Agarwal 4800 Oak Grove Drive Pasadena, CA 91109

Phone: (818) 354-0681 FAX: (818) 393-4559

AGENDA:

ADVOCACY FOR COTS

DRAWBACKS WHEN IMPLEMENTING COTS

JPL COTS⁺⁺ CRITICAL SCREENING FLOW

JPL COTS⁺⁺ CRITICAL QUALIFICATION

COST & SCHEDULE TRADEOFFS

COTs++ Upscreening Results

C-SAM Update and Ongoing Work

COTS DPA Failures

SUMMARY

Advocacy for Using COTS(plastic packages):

- 1. State of-the-art parts are mostly available as COTS
- 2. COTS plastic parts performance capabilities continue to increase (e.g. processing power & high density memories)

- 3. COTS plastic parts enable reduction of hardware weight and volume Aerospace Publication
- 4. COTS plastic parts initial acquisition cost is less than ceramic
- 5. COTS plastic parts have been reported to demonstrate good to excellent reliability in commercial and aerospace applications
- 6. Often they are the only option when Space level part is not offered or available

Drawback to COTS Implementation (plastic packages):

- 1. Upscreening cost is coupled to the following influences and therefore cannot be tightly controlled (no standard exists)
 - Finding suitable test expertise
 - Minimum quantities often dictate cost
 - Manufactures unwillingness to upscreen
 - Costs of ownership depends on risk accepted
- 2. Upscreening schedules can jeopardize project schedules unless
 - Flows and processes are in writing & approved
 - Engineering/QA help is available daily
 - Vendor commits to screening schedule
 - Material in-process status is monitored weekly
- 3. Risk is not totally eliminated with upscreening

8-24-00

Competitive bidding demonstrates cost & schedule selection tradeoffs

8-24-00 **JPL**

Likelihood of Part Failure Vs Cost for Space Flight Applications

More Risk Management is Needed:

JPL/NASA Project Drivers:

Must significantly reduce development time

Per NASA, Better, Faster, Cheaper is here to stay

JPL

7

COTS PEM Risk Mitigation Addresses the Following Concerns:

- Narrow Temperature Range for Commercial Grade
- Plastic Assembly Quality
- Lot Non-Uniformity & Traceability (including radiation)
- Adequacy of Vendors Testing
- Infant Mortality
- Die Construction and Quality

Energetic Particles Investigation (EPI)

Radiation Issues of Using COTS for Space Applications:

Rad Hard Assurance Varies from the same processing lot

Radiation Assurance has little statistical confidence

TID response depends on process-

"Positive" process changes can reduce radiation tolerance

Commercial vendor can change these without notice

No good way of predicting radiation response without extensive testing-

Exception is a controlled Rad Hard process line

Radiation risk mitigation techniques are often required- \$\$\$

Methods to Insure Low Risk COTS in Critical Space Applications

15 yr mission:

10 yr mission:

5 yr mission:

1 yr mission:

Proposed Target Guidelines Derate/WLA/ JPL Upscreen/ RLAT/DPA/QML Qual JPL Upscreen/ Derate/WLA/ RLAT/DPA/QML Qual JPL Upscreen/ Derate/ RLAT/DPA/QML Qual JPL Upscreen DPA/Generic Data

8-24-00

Part Level Screening

(Tailored for Project application/mission requirements)

8-24-00

COTS⁺⁺ Plastic Infusion Critical Qualification (Tailored for Project application/mission requirements)

8-24-00 **JPL**

COTS++ PEM Upscreen Impact on Risk Mitigation:

	Amplifier	ADC	DC-DC Conv.	Reg.
Narrow Temp.Range for Commercial Grade	1	1	3	9
Plastic Assembly Quality	3	9	9	1
Lot Non- Uniformity & Traceability	1	9	3	3
Adequacy of Vendors Testing	1	9	3	9
• Infant Mortality	1	9	1	9
Die Construction and Quality	1	1	1	1
Total Score	8	38	20	31
COTS ⁺⁺ Impact on Lowering Risk	Low	High	n High	High
Fallout	4%	65%	26%	25%

Risk mitigation weighting factors used: Minimum = 1, Moderate = 3, Significant = 9

8-24-00

COTS⁺⁺ Upscreening Rejects by Part Type & Vendor

	Amplifier- A	ADC-B	ADC2-B	DC-DC ConC	Voltage C-A	S.Regulator-B
DPA:	0/4	1/8	TBD	0/4	0/4	0/4
Incoming:	0/78	n/a	4/79	1/78	0/80	8/80
C-SAM:	3/78	38/78	9/75	16/77	5/80	0/80
Temp Cycle:	0/78	10/78	0/75	3/77	0/80	3/72
Burn-In:	0/78	3/68	0/75	0/74	0/80	9/69
QCI:	0/10	0/10	0/10	0/10	0/10	0/10
Total:	3/78	51/78	TBD	20/78	5/80	20/80

8-24-00

Failure Mechanisms from PEM Delamination:

- Stress-induced passivation damage over the die surface
- Wire bond degradation due to shear displacement
- Accelerated metal corrosion
- Die attach adhesion
- Intermittent electricals at high temperature
- Popcorn cracking
- Die cracking

8-24-00

CSAM Yields 06/12/2000		
Part Type	Manufacturer	Yield
NPN Transistor 1	Α	83%
Switching Diode	Α	0%
NPN Transistor 2	Α	100%
Zener Diode	Α	50%
NPN Transistor 3	A	100%
Op-Amp 1	В	87%
Op-Amp 2	С	0%
Op-Amp 3	С	7%
Phase Detector	D	100%
MMIC	E	40%

Results are package/ vendor assembly dependent

Lot sizes range from 15-30 parts each.

IC defect

descriptions are

now identified in

J-STD-035

(Acoustic Microscopy for NonHermetic Encapsulated Electronic Components)

Source: Sonoscan Inc.

A New Failure Characterization Study is Underway Utilizing Plastic Part C-SAM Rejects

Objectives:

- Identify C-SAM reject parts by criteria(s)
- Measure Material Properties including sonic test, IR, X-ray
- Apply extreme temperature cycle stresses
- Repeat Material Properties Measurements including C-SAM at different intervals
- Identify all failure mechanisms and risk rate C-SAM rejects

A Failed Chip Scale Board Assembly is under investigation utilizing C-SAM inspection on components/board

Objectives:

- Identify component delaminations
- Identify board layer delaminations
- Make correlation to CSP package thermal cycle failures
 - CTE Mismatch
 - Package Proximity and Location on Board
 - Ball Bond Size and Location

Updated Examples of COTS Parts/Die Failing DPA

A/D

Figure 3. 4,000X SEM micrograph of loosened metallization traces along edge of die.

RF

FIGURE # 23 SAMPLE # 3 MAG. 30.1KX

SUBJECT:

SEM MICROGRAPH OF SECTIONED

NOTE METAL REMAINING: 0% WITHOUT BARRIER METAL; 10% WITH BARRIER METAL.

PROM

Metallization anomalies are the predominant failures

Summary/Conclusions:

- The concerns/risks anticipated with using COTS PEMS can be reduced to acceptable medium risk levels using JPL upscreening.
- A part qualification plan has been added to JPL's existing screening flows to further insure the reliability of parts used by Projects when application requirements are different.
- Further investigations/studies are being conducted on individual components and board assemblies using C-SAM analysis. This information will provide more understanding of the correlation between delamination and component/ board failure mechanisms.

Visit JPL COTS Web Site at

http://cots.jpl.nasa.gov/